压力容器分析设计早源自美国机械工程师协会的ASME III《核设施元件建造规则》,该协会于1968年发布ASME Ⅷ-2《压力容器另一规则》。
此后30年,各国纷纷参照ASME Ⅷ-2 制定本国的分析设计规范,但总的来说压力容器分析设计方法与20世纪60年代相比变化并不大。
近15年来,国际上压力容器规范发生了巨大的变化。欧盟于1997年颁布承压设备指令PED,随后,2002年5月30日颁布与其配套的EN 13445《非燃烧压力容器》建造规范,提出了很多新理念和新观点,这对ASME压力容器规范来说,无疑形成了挑战。
压力容器焊后热处理、无损检测百分比等,往往与厚度有关,不同材料有不同的厚度界限,俗称门槛值,门槛值上下的技术要求则截然不同。
当设计中的名义厚度接近门槛值时,设计者对所提技术要求一定要格外慎重,因为制造方为满足产品厚度不小于图样标注的小成形厚度(或名义厚度)并考虑工艺减薄等因素的影响,往往要进行厚度(或第二次厚度)圆整,以确定钢材厚度,即制造方选择的钢材厚度可能要大于名义厚度,且可能达到或超过上述厚度界限的门槛值,而标准(GB/T 150.2及材料标准)中厚度界限的划分是以钢材厚度为基准的。
设计人员应该掌握的压力容器制造的基本知识有:
(1)对下料成形、焊接、热处理、无损检测、耐压试验等关键制造环节的方法、基本原理、主要质量要求有初步了解,不仅有助于结构设计与技术要求的制定,也可对制造方的生产能力与工艺路线能否保证产品的质量有个正确的判断。
(2)了解产品制造标准中对制造、检验与验收都有哪些方面的要求,在设计工作需要时方便查阅。如果能对提出上述要求的原因有一定的了解,则有助于对制造标准的应用,以做出更经济合理的设计。
(3)了解所设计的产品制造的主要工艺过程以及其中对产品质量产生重大影响的关键工序,以便从产品整体质量出发,考虑选材、结构及技术要求。
(4)了解与制造、检验、检测等方面有关的新技术、新工艺,并合理地将其应用到所设计的产品中,推动技术进步。